Hello and welcome back, in this chapter we will continue to develop the previous earning application which shows the shoe and shirt sales figure from the input database.
If you want to understand what is going on, then do read the previous post about this topic. In this chapter, I am going to improve the previous application by including a combo box that allows the user to select the type of graph or chart he or she wants to view.
This is the updated version of the user interface program.
import tkinter as tk from tkinter import ttk from Input import Input win = tk.Tk() win.title("Earn Great") def submit(cc): # commit the data into earning table if(cc=="Shoe"): sub_mit.submit(shoe_type.get(), earning.get(), location.get(), cc) elif(cc=='Shirt'): sub_mit.submit(shirt_type.get(), earning.get(), location.get(), cc) else: print("You need to enter a value!") #create label frame for the shoe ui shoe_frame= ttk.Labelframe(win, text ="Shoe Sale") shoe_frame.grid(column=0, row=0, padx=4, pady=4, sticky='w') # create combo box for the shoe type shoe_type = tk.StringVar() shoe_combo = ttk.Combobox(shoe_frame, width=9, textvariable = shoe_type) shoe_combo['values'] = ('Baby Girl', 'Baby Boy', 'Boy', 'Girl', 'Man', 'Woman') shoe_combo.current(0) shoe_combo.grid(column=0, row=0) # create the submit button for shoe type action_shoe = ttk.Button(shoe_frame, text="submit", command= lambda: submit("Shoe")) action_shoe.grid(column=1, row=0) #create label frame for the shirt ui shirt_frame= ttk.Labelframe(win, text ="Shirt Sale") shirt_frame.grid(column=0, row=1, padx=4, pady=4, sticky='w') # create combo box for the shirt type shirt_type = tk.StringVar() shirt_combo = ttk.Combobox(shirt_frame, width=16, textvariable = shirt_type) shirt_combo['values'] = ('T-Shirt', 'School Uniform', 'Baby Cloth', 'Jacket', 'Blouse', 'Pajamas') shirt_combo.current(0) shirt_combo.grid(column=0, row=0) # create the submit button for shirt type action_shirt = ttk.Button(shirt_frame, text="submit", command= lambda: submit("Shirt")) action_shirt.grid(column=1, row=0) #create label frame for the earning ui earning_frame= ttk.Labelframe(win, text ="Earning") earning_frame.grid(column=1, row=0, padx=4, pady=4, sticky='w') # create combo box for the shoe earning earning = tk.StringVar() earn_combo = ttk.Combobox(earning_frame, width=9, textvariable = earning) earn_combo['values'] = ('1.00', '2.00', '3.00', '4.00', '5.00', '6.00', '7.00', '8.00', '9.00', '10.00') earn_combo.current(0) earn_combo.grid(column=0, row=0) #create label frame for the location ui location_frame= ttk.Labelframe(win, text ="Location") location_frame.grid(column=1, row=1, padx=4, pady=4, sticky='w') # create combo box for the sale location location = tk.StringVar() location_combo = ttk.Combobox(location_frame, width=13, textvariable = location) location_combo['values'] = ('Down Town', 'Market', 'Bus Station', 'Beach', 'Tea House') location_combo.current(0) location_combo.grid(column=0, row=0) def plot(cc): # plotting the bar chart of total sales sub_mit.plot(location.get(), cc, month.get(), plot_type.get()) #create label frame for the plot graph ui plot_frame= ttk.Labelframe(win, text ="Plotting Graph Select Date") plot_frame.grid(column=0, row=2, padx=4, pady=4, sticky='w') # create the plot button for shoe type action_pshoe = ttk.Button(plot_frame, text="Shoe", command= lambda: plot("Shoe")) action_pshoe.grid(column=1, row=0) # create the plot button for shirt type action_pshirt = ttk.Button(plot_frame, text="Shirt", command= lambda: plot("Shirt")) action_pshirt.grid(column=2, row=0) # create the plot button for all items action_p_loc = ttk.Button(plot_frame, text="All Goods", command= lambda: plot("All Items")) action_p_loc.grid(column=3, row=0) # create combo box for the sale's month month = tk.StringVar() month_combo = ttk.Combobox(plot_frame, width=3, textvariable = month) month_combo['values'] = ('01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12') month_combo.current(0) month_combo.grid(column=4, row=0) # create combo box for the plot type plot_type = tk.StringVar() month_combo = ttk.Combobox(plot_frame, width=7, textvariable = plot_type) month_combo['values'] = ('line', 'bar', 'barh', 'hist', 'box', 'area', 'pie') month_combo.current(0) month_combo.grid(column=5, row=0) win.resizable(0,0) sub_mit = Input() sub_mit.setting() win.mainloop()
This is the updated part for the input class.
import sqlite3 import pandas as pd import matplotlib.pyplot as plt class Input: def __init__(self): pass def setting(self): conn = sqlite3.connect('daily_earning.db') print("Opened database successfully") try: conn.execute('''CREATE TABLE DAILY_EARNING_CHART (ID INTEGER PRIMARY KEY AUTOINCREMENT, DESCRIPTION TEXT (50) NOT NULL, EARNING TEXT NOT NULL, TYPE TEXT NOT NULL, LOCATION TEXT NOT NULL, TIME TEXT NOT NULL);''') except: pass conn.close() def submit(self,description, earning, location, cc): # Insert values into earning table self.description = description self.earning = earning self.location = location self.cc = cc try: sqliteConnection = sqlite3.connect('daily_earning.db') cursor = sqliteConnection.cursor() print("Successfully Connected to SQLite") sqlite_insert_query = "INSERT INTO DAILY_EARNING_CHART (DESCRIPTION,EARNING,TYPE, LOCATION, TIME) VALUES ('" + self.description + "','"+ self.earning + "','" + self.cc + "','" + self.location + "',datetime('now', 'localtime'))" count = cursor.execute(sqlite_insert_query) sqliteConnection.commit() print("Record inserted successfully into DAILY_EARNING_CHART table", cursor.rowcount) cursor.close() except sqlite3.Error as error: print("Failed to insert earning data into sqlite table", error) finally: if (sqliteConnection): sqliteConnection.close() def plot(self, location, cc, month, plot_type): # plotting the bar chart plt.clf() #this is uses to clear the previous graph plot # dictionary uses to print out the month within header of the graph monthdict = {'01':'January', '02':'Febuary', '03':'March', '04':'April', '05':'May', '06' : 'June', '07':'July', '08':'August', '09':'September', '10':'October', '11':'November', '12':'December'} try: shoe_dict = {'Baby Girl' : 0.00, 'Baby Boy' : 0.00, 'Boy':0.00, 'Girl':0.00, 'Man':0.00, 'Woman':0.00} shirt_dict = {'T-Shirt':0.00, 'School Uniform':0.00, 'Baby Cloth':0.00, 'Jacket':0.00, 'Blouse':0.00, 'Pajamas':0.00} sqliteConnection = sqlite3.connect('daily_earning.db') cursor = sqliteConnection.cursor() print("Successfully Connected to SQLite") if cc=='All Items': cursor.execute("SELECT * FROM DAILY_EARNING_CHART WHERE LOCATION=?", (location,)) else: cursor.execute("SELECT * FROM DAILY_EARNING_CHART WHERE TYPE=? AND LOCATION=?", (cc, location)) rows = cursor.fetchall() for row in rows: if(row[5].split('-')[1]) == month: if cc=="Shoe": shoe_dict[row[1]] += float(row[2]) elif cc=="Shirt": shirt_dict[row[1]] += float(row[2]) elif cc=="All Items": if row[1] in shoe_dict: shoe_dict[row[1]] += float(row[2]) else: shirt_dict[row[1]] += float(row[2]) # dictionary for the graph axis label_x = [] label_y = [] if cc=="Shoe": for key, value in shoe_dict.items(): label_x.append(key) label_y.append(value) elif cc=="Shirt": for key, value in shirt_dict.items(): label_x.append(key) label_y.append(value) else: for key, value in shirt_dict.items(): label_x.append(key) label_y.append(value) for key, value in shoe_dict.items(): label_x.append(key) label_y.append(value) # begin plotting the bar chart s = pd.Series(index=label_x, data=label_y) if(plot_type!="pie"): s.plot(label="Goods Sale vs Month", use_index=True, color="green", legend=True, kind=plot_type, title = cc + " Sales for " + monthdict[month] + " at " + location) else: s.plot(label="Goods Sale vs Month", use_index=True, legend=True, kind=plot_type, title=cc + " Sales for " + monthdict[month] + " at " + location) plt.show() except sqlite3.Error as error: print("Failed to plot earning data", error) finally: if (sqliteConnection): sqliteConnection.close()
Now we can select any chart or graph we wish to see from the month of sales database.
More will come, as I am going to keep on working on the above program by including more features into it. One of the features I am working on is the feature that allows me to create a column from the database for future goods.
from Planet Python
via read more
No comments:
Post a Comment