A picture is worth a thousand words, and with Python’s matplotlib
library, it fortunately takes far less than a thousand words of code to create a production-quality graphic.
However, matplotlib
is also a massive library, and getting a plot to look just right is often achieved through trial and error. Using one-liners to generate basic plots in matplotlib
is relatively simple, but skillfully commanding the remaining 98% of the library can be daunting.
In this beginner-friendly course, you’ll learn about plotting in Python with matplotlib
by looking at the theory and following along with practical examples. While learning by example can be tremendously insightful, it helps to have even just a surface-level understanding of the library’s inner workings and layout as well.
By the end of this course, you’ll:
- Know the differences between PyLab and Pyplot
- Grasp the key concepts in the design of
matplotlib
- Understand
plt.subplots()
- Visualize arrays with
matplotlib
- Plot by combining
pandas
andmatplotlib
This course assumes you know a tiny bit of NumPy. You’ll mainly use the numpy.random
module to generate “toy” data, drawing samples from different statistical distributions. If you don’t already have matplotlib
installed, see the documentation for a walkthrough before proceeding.
[ Improve Your Python With 🐍 Python Tricks 💌 – Get a short & sweet Python Trick delivered to your inbox every couple of days. >> Click here to learn more and see examples ]
from Planet Python
via read more
No comments:
Post a Comment